708 research outputs found

    Characterization and prognostic value of LXR splice variants in triple-negative breast cancer

    Get PDF
    Activity of liver x receptor (LXR), the homeostatic regulator of cholesterol metabolism, is elevated in triple-negative breast cancer (BCa) relative to other BCa subtypes, driving drug resistance and metastatic gene signatures. The loci encoding LXRα and LXRβ produce multiple alternatively spliced proteins, but the true range of variants and their relevance to cancer remain poorly defined. Here, we report seven LXR splice variants, three of which have not previously been reported and five that were prognostic for disease-free survival. Expression of full-length LXRα splice variants was associated with poor prognosis, consistent with a role as an oncogenic driver of triple-negative tumor pathophysiology. Contrary to this was the observation that high expression of truncated LXRα splice variants or any LXRβ splice variant was associated with longer survival. These findings indicate that LXR isoform abundance is an important aspect of understanding the link between dysregulated cholesterol metabolism and cancer pathophysiology

    Phytosterols Inhibit Side-Chain Oxysterol Mediated Activation of LXR in Breast Cancer Cells

    Get PDF
    Low fruit and vegetable consumption and high saturated fat consumption causes elevated circulating cholesterol and are breast cancer risk factors. During cholesterol metabolism, oxysterols form that bind and activate the liver X receptors (LXRs). Oxysterols halt breast cancer cell proliferation but enhance metastatic colonization, indicating tumour suppressing and promoting roles. Phytosterols and phytostanols in plants, like cholesterol in mammals, are essential components of the plasma membrane and biochemical precursors, and in human cells can alter LXR transcriptional activity. Here, a panel of breast cancer cell lines were treated with four dietary plant sterols and a stanol, alone or in combination with oxysterols. LXR activation and repression were measured by gene expression and LXR-luciferase reporter assays. Oxysterols activated LXR in all cell lines, but surprisingly phytosterols failed to modulate LXR activity. However, phytosterols significantly inhibited the ability of oxysterols to drive LXR transcription. These data support a role for phytosterols in modulating cancer cell behaviour via LXR, and therefore suggest merit in accurate dietary recordings of these molecules in cancer patients during treatment and perhaps supplementation to benefit recovery

    Assessing metabolism and injury in acute human traumatic brain injury with magnetic resonance spectroscopy: current and future applications

    Get PDF
    Traumatic brain injury triggers a series of complex pathophysiological processes. These include abnormalities in brain energy metabolism; consequent to reduced tissue pO₂ arising from ischaemia or abnormal tissue oxygen diffusion, or due to a failure of mitochondrial function. In-vivo magnetic resonance spectroscopy (MRS) allows non-invasive interrogation of brain tissue metabolism in patients with acute brain injury. Nuclei with ‘spin’ e.g. ¹H, ³¹P and ¹³C, are detectable using MRS and are found in metabolites at various stages of energy metabolism, possessing unique signatures due to their chemical shift or spin-spin interactions (J-coupling). The most commonly used clinical MRS technique, ¹H MRS, uses the great abundance of hydrogen atoms within molecules in brain tissue. Spectra acquired with longer echo-times include N-acetylaspartate, creatine and choline. N-acetylaspartate, a marker of neuronal mitochondrial activity related to ATP, is reported to be lower in patients with TBI than healthy controls, and the ratio of N-acetylaspartate/creatine at early time points may correlate with clinical outcome. ¹H MRS acquired with shorter echo-times produces a more complex spectrum, allowing detection of a wider range of metabolites. ³¹P MRS detects high energy phosphate species, which are the end-products of cellular respiration: adenosine triphosphate (ATP) and phosphocreatine. ATP is the principal form of chemical energy in living organisms, and phosphocreatine (PCr) is regarded as a readily mobilised reserve for its replenishment during periods of high utilisation. The ratios of high energy phosphates are thought to represent a balance between energy generation, reserve and use in the brain Additionally, the chemical shift difference between Pi and PCr enables calculation of intracellular pH. ¹³C MRS detects the ¹³C-isotope of carbon in brain metabolites. As the natural abundance of ¹³C is low (1.1%), ¹³C MRS is typically performed following administration of ¹³C-enriched substrates which permits tracking of the metabolic fate of the infused ¹³C in the brain over time, and calculation of metabolic rates in a range of biochemical pathways, including glycolysis, the tricarboxylic acid (TCA) cycle, and glutamate-glutamine cycling. The advent of new hyperpolarization techniques to transiently boost signal in ¹³C-enriched MRS in-vivo studies shows promise in this field and further developments are expected.The funding bodies acknowledged on the paper are: PJAH is supported by a National Institute for Health Research (NIHR) Research Professorship, Academy of Medical Sciences/Health Foundation Senior Surgical Scientist Fellowship and the National Institute for Health Research Biomedical Research Centre, Cambridge. PJAH and KLHC are supported by the NIHR Biomedical Research Centre, Cambridge. MGS is supported by PH’s NIHR Research Professorship. AS is funded by the NIHR via an award to the Cambridge NIHR/Wellcome Trust Clinical Research Facility

    Multiple-length-scale elastic instability mimics parametric resonance of nonlinear oscillators

    Full text link
    Spatially confined rigid membranes reorganize their morphology in response to the imposed constraints. A crumpled elastic sheet presents a complex pattern of random folds focusing the deformation energy while compressing a membrane resting on a soft foundation creates a regular pattern of sinusoidal wrinkles with a broad distribution of energy. Here, we study the energy distribution for highly confined membranes and show the emergence of a new morphological instability triggered by a period-doubling bifurcation. A periodic self-organized focalization of the deformation energy is observed provided an up-down symmetry breaking, induced by the intrinsic nonlinearity of the elasticity equations, occurs. The physical model, exhibiting an analogy with parametric resonance in nonlinear oscillator, is a new theoretical toolkit to understand the morphology of various confined systems, such as coated materials or living tissues, e.g., wrinkled skin, internal structure of lungs, internal elastica of an artery, brain convolutions or formation of fingerprints. Moreover, it opens the way to new kind of microfabrication design of multiperiodic or chaotic (aperiodic) surface topography via self-organization.Comment: Submitted for publicatio

    Long-term effects of delayed-release dimethyl fumarate in multiple sclerosis: Interim analysis of ENDORSE, a randomized extension study

    Get PDF
    BACKGROUND: Delayed-release dimethyl fumarate (DMF) demonstrated strong efficacy and a favorable benefit-risk profile for patients with relapsing-remitting multiple sclerosis (RRMS) in phase 3 DEFINE/CONFIRM studies. ENDORSE is an ongoing long-term extension of DEFINE/CONFIRM. OBJECTIVE: We report efficacy and safety results of a 5-year interim analysis of ENDORSE (2 years DEFINE/CONFIRM; minimum 3 years ENDORSE). METHODS: In ENDORSE, patients randomized to DMF 240 mg twice (BID) or thrice daily (TID) in DEFINE/CONFIRM continued this dosage, and those initially randomized to placebo (PBO) or glatiramer acetate (GA) were re-randomized to DMF 240 mg BID or TID. RESULTS: For patients continuing DMF BID (BID/BID), annualized relapse rates were 0.202, 0.163, 0.139, 0.143, and 0.138 (years 1-5, respectively) and 63%, 73%, and 88% were free of new or enlarging T2 hyperintense lesions, new T1 hypointense lesions, and gadolinium-enhanced lesions, respectively, at year 5. Adverse events (AEs; serious adverse events (SAEs)) were reported in 91% (22%; BID/BID), 95% (24%; PBO/BID), and 88% (16%; GA/BID) of the patients. One case of progressive multifocal leukoencephalopathy was reported in the setting of severe, prolonged lymphopenia. CONCLUSION: Treatment with DMF was associated with continuously low clinical and magnetic resonance imaging (MRI) disease activity in patients with RRMS. These interim data demonstrate a sustained treatment benefit and an acceptable safety profile with DMF

    Age-Related Attenuation of Dominant Hand Superiority

    Get PDF
    The decline of motor performance of the human hand-arm system with age is well-documented. While dominant hand performance is superior to that of the non-dominant hand in young individuals, little is known of possible age-related changes in hand dominance. We investigated age-related alterations of hand dominance in 20 to 90 year old subjects. All subjects were unambiguously right-handed according to the Edinburgh Handedness Inventory. In Experiment 1, motor performance for aiming, postural tremor, precision of arm-hand movement, speed of arm-hand movement, and wrist-finger speed tasks were tested. In Experiment 2, accelerometer-sensors were used to obtain objective records of hand use in everyday activities

    MiR-19b non-canonical binding is directed by HuR and confers chemosensitivity through regulation of P-glycoprotein in breast cancer

    Get PDF
    MicroRNAs and RNA-binding proteins exert regulation on >60% of coding genes, yet interplay between them is little studied. Canonical microRNA binding occurs by base-pairing of microRNA 3′-ends to complementary “seed regions” in mRNA 3′UTRs, resulting in translational repression. Similarly, regulatory RNA-binding proteins bind to mRNAs, modifying stability or translation. We investigated post-transcriptional regulation acting on the xenobiotic pump ABCB1/P-glycoprotein, which is implicated in cancer therapy resistance. We characterised the ABCB1 UTRs in primary breast cancer cells and identified UTR sequences that responded to miR-19b despite lacking a canonical binding site. Sequences did, however, contain consensus sites for the RNA-binding protein HuR. We demonstrated that a tripartite complex of HuR, miR-19b and UTR directs repression of ABCB1/P-glycoprotein expression, with HuR essential for non-canonical miR-19b binding thereby controlling chemosensitivity of breast cancer cells. This exemplifies a new cooperative model between RNA-binding proteins and microRNAs to expand the repertoire of mRNAs that can be regulated. This study suggests a novel therapeutic target to impair P-glycoprotein mediated drug efflux, and also indicates that current microRNA binding predictions that rely on seed regions alone may be too conservative

    The use of a bayesian hierarchy to develop and validate a co-morbidity score to predict mortality for linked primary and secondary care data from the NHS in England

    Get PDF
    Background: We have assessed whether the linkage between routine primary and secondary care records provided an opportunity to develop an improved population based co-morbidity score with the combined information on co-morbidities from both health care settings. Methods: We extracted all people older than 20 years at the start of 2005 within the linkage between the Hospital Episodes Statistics, Clinical Practice Research Datalink, and Office for National Statistics death register in England. A random 50% sample was used to identify relevant diagnostic codes using a Bayesian hierarchy to share information between similar Read and ICD 10 code groupings. Internal validation of the score was performed in the remaining 50% and discrimination was assessed using Harrell’s C statistic. Comparisons were made over time, age, and consultation rate with the Charlson and Elixhauser indexes. Results: 657,264 people were followed up from the 1st January 2005. 98 groupings of codes were derived from the Bayesian hierarchy, and 37 had an adjusted weighting of greater than zero in the Cox proportional hazards model. 11 of these groupings had a different weighting dependent on whether they were coded from hospital or primary care. The C statistic reduced from 0.88 (95% confidence interval 0.88–0.88) in the first year of follow up, to 0.85 (0.85–0.85) including all 5 years. When we stratified the linked score by consultation rate the association with mortality remained consistent, but there was a significant interaction with age, with improved discrimination and fit in those under 50 years old (C=0.85, 0.83–0.87) compared to the Charlson (C=0.79, 0.77–0.82) or Elixhauser index (C=0.81, 0.79–0.83). Conclusions: The use of linked population based primary and secondary care data developed a co-morbidity score that had improved discrimination, particularly in younger age groups, and had a greater effect when adjusting for co-morbidity than existing scores

    Conceptualizing pathways linking women's empowerment and prematurity in developing countries.

    Get PDF
    BackgroundGlobally, prematurity is the leading cause of death in children under the age of 5. Many efforts have focused on clinical approaches to improve the survival of premature babies. There is a need, however, to explore psychosocial, sociocultural, economic, and other factors as potential mechanisms to reduce the burden of prematurity. Women's empowerment may be a catalyst for moving the needle in this direction. The goal of this paper is to examine links between women's empowerment and prematurity in developing settings. We propose a conceptual model that shows pathways by which women's empowerment can affect prematurity and review and summarize the literature supporting the relationships we posit. We also suggest future directions for research on women's empowerment and prematurity.MethodsThe key words we used for empowerment in the search were "empowerment," "women's status," "autonomy," and "decision-making," and for prematurity we used "preterm," "premature," and "prematurity." We did not use date, language, and regional restrictions. The search was done in PubMed, Population Information Online (POPLINE), and Web of Science. We selected intervening factors-factors that could potentially mediate the relationship between empowerment and prematurity-based on reviews of the risk factors and interventions to address prematurity and the determinants of those factors.ResultsThere is limited evidence supporting a direct link between women's empowerment and prematurity. However, there is evidence linking several dimensions of empowerment to factors known to be associated with prematurity and outcomes for premature babies. Our review of the literature shows that women's empowerment may reduce prematurity by (1) preventing early marriage and promoting family planning, which will delay age at first pregnancy and increase interpregnancy intervals; (2) improving women's nutritional status; (3) reducing domestic violence and other stressors to improve psychological health; and (4) improving access to and receipt of recommended health services during pregnancy and delivery to help prevent prematurity and improve survival of premature babies.ConclusionsWomen's empowerment is an important distal factor that affects prematurity through several intervening factors. Improving women's empowerment will help prevent prematurity and improve survival of preterm babies. Research to empirically show the links between women's empowerment and prematurity is however needed
    corecore